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Abstract: Reproduction is one of the most important physiological events for the maintenance of the species. 
Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions that take place 
along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) 
regulates synthesis and release of gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone 
(LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In 
recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in 
the different regulatory mechanisms of the growth, metabolism, and reproduction of these species. However, 
especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The 
study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and 
success of aquaculture.
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Introduction
Aquaculture is the fastest-growing food production sector 

globally and plays an essential role in meeting the food de-
mand of populations. In this stage, incorporating new techno-
logies that allow increasing the number of cultivable species 
is crucial1,2. For several years, the aquaculture sector has fo-
cused mainly on establishing the minimum requirements for 
the development, growth, and reproductive success of the 
different species3,4. The study of endocrinology in teleost fish 
has been fundamental for understanding the functional roles 
of hormones in biological systems. In recent years, the existen-
ce of a complex and infinite number of interactions between 
hormones and nerve structures has been demonstrated5-9. Re-
production is one of the most important biological processes 
of organisms since the survival and perpetuation of the spe-
cies depend on it1,10. The control of reproductive events allows 
the application of selection programs to improve the growth 
rate, the survival of the species, reduce the problems asso-
ciated with sexual maturation and generate monosex popula-
tions11,12. The quality of spawning depends on environmental 
factors such as photoperiod, temperature, salinity, tank volu-
me, substrate vegetation, etc1,13. The initiation of reproduction 
is affected by the number of energy reserves in the body and is 
sensitive to various metabolic factors.

The neuroendocrine mechanisms responsible for the as-
sociation between energy balance and fertility are represen-
ted by metabolic hormones and neuropeptides that affect 
the hypothalamic center. In teleosts, as in other vertebrates, 
reproduction is coordinated by the hypothalamic-pituitary-go-
nad (HPG) axis14-16. However, there is very little research on 

reproductive biology and these species' molecular and cellular 
mechanisms12,17,18. This review presents a general bibliographic 
compilation of the main hormonal and neuroendocrine aspects 
of the control of reproductive function in teleost fish. There-
fore, it will try to provide an overview of the most significant 
findings in recent years.

Hormonal control of reproduction in teleost fish
The control of reproduction in fish is a multifactorial pro-

cess involving environmental, social, neuronal, endocrine, and 
metabolic agents. a cascade of hormones regulates19,20 repro-
duction. The mechanisms involved in this process depend on 
the HPG axis (Figure 1)15,16. Hormones and neuropeptides are 
produced in specific neuronal regions of the brain, mainly in 
the hypothalamus. These can directly inhibit or stimulate go-
nadotropins (GtH) release into the bloodstream or indirectly 
through their functions on gonadotropin-releasing hormone 
(GnRH)21,19. The beginning of sexual maturation in fish pre-
sents two simultaneous events: the release of gonadotro-
pin-releasing hormone (GnRH)22-25 and the activation of GtH 
receptors in the gonads26. The activation of these receptors 
stimulates the production of germ cells, the synthesis of sex 
steroids and growth factors, and the effectors of gonadal de-
velopment12,27,19. At the level of the pituitary gland, different 
molecules are secreted, such as: luteinizing hormone (LH), 
follicle-stimulating hormone (FSH), growth hormone (GH), 
prolactin (PRL), thyroid-stimulating hormone (TSH), among 
others21. These hormones participate in osmoregulation pro-
cesses, growth, gonadal steroid production, the onset of pu-
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berty, and reproductive behavior of fish7,12,28-30. In addition, a 
series of neuroendocrine factors and hypothalamic neuropep-
tides have been identified that regulate behavior, eating, and 
energy balance. Their physiological and metabolic functions 
guarantee survival and growth during the reproductive stage16. 
Within these neuropeptides, we can mention the GH relea-
sing hormone (GHRH), pituitary adenylate cyclase-activating 
polypeptide (PACAP), Somatostatin (SS), the thyrotropin-re-
leasing hormone (TRH), Dopamine, Neuropeptide-Y ( NPY), 
gamma-aminobutyric acid (GABA), neurokinin B (NKB) and go-
nadotropin inhibiting hormone (GnIH)18,31-36. In addition, among 
these neuropeptides is also included Kisspeptin (Kiss)37, which 
constitutes an important regulator of the synthesis and relea-
se of GnRH38,39,40,41. Another very novel neuropeptide is Phoe-
nixin (PNX), which regulates physiological processes such as 
food consumption, proliferation, and cell differentiation42,43. 
Moreover, it has been reported to be involved in reproductive 
function; due to its role in gene expression regulation in the 
hypothalamus and pituitary44,45. High concentrations of phoe-
nixin in the central and peripheral nervous systems suggest 
that the peptide may serve as a multi site-directed signaling 
molecule44,46,47. In general, these brain factors, in addition to 
being involved in the secretion of pituitary hormones, regulate 
other physiological systems, but they greatly influence repro-
duction12,30,36,48. At each level of the axis, a limited number of 
target cells are under the influence of many factors. The final 
cellular response is the overall effects of these mediators on 
the components of intracellular signal transduction49. Mature 
gonads secrete sex steroids (estrogens and androgens), which 

negatively regulate hormonal secretions in the hypothalamus 
and pituitary gland. This closed-loop system maintains the ho-
meostasis of the reproductive system12. In general, according 
to their functions on the reproductive cycle, FSH has a vitello-
genin function and LH a maturational function50-53.

Gonadotropin-releasing hormone (GnRH)
In fish, as in all vertebrates, reproduction is regulated by 

the hypothalamus through gonadotropin-releasing hormone 
(GnRH)16,54. This hormone constitutes the critical element of 
the neuroendocrine control of reproduction16,55-58. The (GnRHs) 
constitute a family of peptide molecules whose nature and di-
versity have been evidenced in teleost fish59. Three structural 
variants of GnRH have been identified in various vertebrate 
species: GnRH1, GnRH2, and GnRH356,57,58,60,61. However, the 
molecular mechanisms that link the 3 isoforms of GnRH with 
reproduction in fish are not well clarified62.Mammals only pos-
sess GnRH1 and GnRH2, while teleost fish have two or all three 
types of GnRH41. Most teleost fish, including Perciformes and 
Pleuronectiformes, present all three GnRH isoforms36,55,57,63. 
Other fish species such as salmon (Salmoninae), zebrafish 
(Danio rerio) and goldfish (Carassius auratus) possess only 
two forms of GnRH (GnRH2 and GnRH3)14,36,64,65 GnRH1 is ex-
pressed mainly in the olfactory bulb, ventral telencephalon, 
and the pre-optic zone. GnRH2, a conserved form from fish to 
mammals, is expressed mainly in the midbrain36.

GnRH3 constitutes the specific form of GnRH in fish66,67 

and has a similar distribution to GnRH1. The three structu-
ral variants of GnRH have different physiological functions. 

Figure 1. Hypothalamic-Pituitary-Gonads (HPG) axis. Gonadotropin-Releasing Hormone (GnRH); follicle-stimulating hormone 
(FSH); luteinizing hormone (LH); prolactin (PRL); growth hormone (GH); Kisspeptin (Kiss2); Gonadotropin inhibitory hormone 
(GnIH); Growth factors (IGF); Thyroid-stimulating hormone (TSH); Triiodothyronine (T3); Tetraiodothyronine (T4). GnRH secre-
tion acts on a population of gonadotropic cells of the pituitary, which release LH and FSH. In addition, the pituitary is the site 
of synthesis, storage, and release of GH, TSH, and PRL; it is considered a transducer that, through its secretions, regulates 
endocrine functions, such as reproduction, osmoregulation, growth, and metabolism.
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GnRH1 is considered the hypothalamic variant capable of 
stimulating gonadotropin secretion and constitutes the fun-
damental regulator of the pituitary in mammals56,58. In teleost 
fish, GnRH1 has its physiological importance in the regulation 
of gonadotropin secretion and gametogenesis14. GnRH2 is in-
volved in regulating eating behavior58,68,69,70,71 and probably has 
an intermediary role between food intake and reproduction72,73. 
It is highly probable that both GnRH2 and other GnRH isoforms 
expressed in the olfactory region play a role in the perception 
of social and pheromonal signals36,74. GnRH3 participates in 
the control of reproductive behaviors in several fish species14 

.For example, this isoform stimulates the nesting behavior of 
male dwarf Gourami (Trichogaster lalius)14. In adult zebrafish 
lacking GnRH3 neurons, there was evidence of an arrest in oo-
cyte development and also a reduction in the mean diameter 
of the oocytes. These findings suggest that hypophysiotropic 
GnRH3 neurons are critical for normal oocyte development 
and reproduction75. Both this study and those carried out by 
Palevitch et al. 200776, suggest that GnRH3 is the hypophy-
siotropic GnRH capable of regulating the HPG axis in species 
lacking GnRH1, such as zebrafish. The action of GnRHs on tar-
get cells is mediated by specific binding to their membrane re-
ceptors (GnRHR)36. Corresponding to the primary role of GnRH 
in controlling reproduction, GnRHRs are mainly localized in 
the brain to mediate the neuromodulatory actions of GnRH in 
other neuronal systems and in gonadotropic cells of the pitui-
tary to regulate gonadotropin secretion. Furthermore, GnR-
HRs, like GnRHs, are found in the gonads and other peripheral 
tissues, exerting multiple physiological actions36,77. In general, 
the primary function attributed to GnRH is the stimulation of 
the synthesis and release of GtH in teleost fish36,55,77-81 Besides, 
it can regulate the gonadal maturation, the development of 
germ cells (oogenesis and spermatogenesis), gonadal steroid 
production, ovulation, spermiation, and spawning36,57 In addi-
tion, it is involved in the control of the release and expression of 
growth hormone, somatolactin, and prolactin82,83. Considering 
the published results in the literature, the effects of GnRHs 
on the control of reproductive function depend on the species, 
sex, and reproductive status, as well as the complex endocrine 
interactions along the HPG axis57,83.  

Kisspeptin
Kisspeptin regulates the HPG axis34,84,85,86, and in the ini-

tiation of sexual maturation84,87. Kisspeptin expression is more 
abundant in the brain, particularly in the hypothalamus84,88. 
It originates from neuronal populations in the hypothalamus 
and projects into the median eminence (EM) and preoptic 
area (POA) regions, where GnRH neurons are also found89,90,91. 
However, its expression has been evidenced in peripheral tis-
sues such as the intestine, kidney, liver, pancreas, adipose tis-
sue, and gonads92. In mammals, only (kiss1) coding for kisspep-
tin and (kiss1r) coding for the receptor have been identified93. 
However, in some teleost species due to a third duplication of 
the genome, two genes coding for kisspeptin (kiss1 and kiss2) 
have been identified86,93 Some of these species are medaka 
(Oryzias latipes)84, zebrafish84,94, sea bass (Lateolabrax japoni-
cus), and redfish (Sciaenops ocellatus)95. Other species, such as 
the puffer fish (Takifugu niphobles)87 and Senegalese sole (So-
lea senegalensis) contain only the kiss2 gene96. The kisspep-
tin receptor (kiss-R) in fish is expressed in tissues such as the 
brain, pituitary, gonads, heart, kidney, liver, and muscle84,87,97-99.
Different teleosts species have two or even three genes en-
coding for kisspeptin receptors (kiss1r, kiss2r, kiss3r)93,100. For 
example, kiss1r and kiss2r have been identified in medaka, ze-

brafish, goldfish, striped bass (Morone saxatilis), and European 
bass (Dicentrarchus labrax). However, kiss2r has only been 
identified in Nile tilapia (Oreochromis niloticus), cobia (Rachy-
centron canadum), gray mullet (Mullus barbatus), spotted 
grouper (Epinephelus fuscoguttatus), Senegalese sole, among 
others101. Kiss3r, the expression demonstrated in zebrafish97, 
goldfish102, medaka103, striped bass (Zmora et al., 2012), and 
European eel (Anguilla anguilla)104. There is evidence in fish of 
the participation of kisspeptins and their receptors in the feed-
back mechanisms of sex steroids40. The role of kisspeptin in re-
production is based mainly on the stimulation of GnRH release, 
indirectly modulating the release of LH and FSH93,105. In mam-
malian models, kisspeptin regulates the release of LH through 
projections on GnRH neurons. However, in the case of teleosts, 
these functions are not clear62. Zhao et al. 2014106 provided 
interesting data on the modulatory effects of kiss1 and kiss2 
on neuronal GnRH subpopulations. First, they reported that 
treatment with kiss1 or kiss2 during the first day after ferti-
lization stimulated the proliferation of GnRH3 neurons in the 
peripheral nervous system. However, only kiss1 stimulated the 
proliferation of terminal and hypothalamic nerve populations 
of GnRH3 neurons106. In zebrafish (GnRH3) and striped bass 
(GnRH1), few preoptic GnRH neurons appear to be innervated 
by kisspeptin94,107,108. However, European seabass (Dicentrar-
chus labrax) and medaka hypothalamic GnRH3 neurons are 
not associated with kisspeptin fibers88,109. Zmora et al. 2015110, 
found kiss1 immunoreactive nerve endings that reach LH cells, 
suggesting the existence of a direct pituitary site of action of 
kisspeptin These results are similar to those published by 
Shahjahan et al. in 201414 where the expression of kisspeptin 
is evidenced in the pituitary gland of goldfish and puffer fish 
(Takifugu rubripes). Studies in goldfish37,99 and sea bass111 have 
confirmed a direct stimulation in the secretion of LH and FSH 
in pituitary cells in response to kisspeptin administration. On 
the other hand, in goldfish, kiss1 significantly increased LH-β, 
GH and PRL mRNA levels through in vitro studies99. Interestin-
gly, both kiss1 and kiss2 regulate FSH-β expression levels in 
pituitary cell cultures in striped bass (Morone saxatilis). Howe-
ver, only Kiss1 can regulate LH-β mRNA levels in seabass ne-
gatively110. In sexually mature female zebrafish, administration 
of Kiss2 by intraperitoneal injection significantly increased FSH 
and LH mRNA levels. On the other hand, the administration 
of kiss1 by the same route did not have significant differen-
ces in GtH gene expression levels84,112. The stronger effect of 
kiss2 compared to kiss1 was also observed in the release of 
FSH and LH in sea bass95,112. A similar trend was observed for 
the effects of kisspeptins on the stimulating effect on gonadal 
maturation in seabass and striped bass113. In contrast, intra-
peritoneal injections of kiss2 stimulated mRNA expression of 
FSH rather than LH in female spotted grouper114. Furthermore, 
in goldfish, intraperitoneal injections of kiss1, but not kiss2, sti-
mulated the release of LH in sexually mature females102. Also, 
it has been reported that kiss2 may have effects on food intake 
and growth function88,96,115. Furthermore, it can act as a link be-
tween food intake, energy homeostasis, and reproduction116-118. 
In general, these findings indicate the role of kiss1 and kiss2 
in gonadotropin regulation is species-specific. Collectively, the 
differences between the species derive from their reproductive 
behavior and the stages of reproduction.

Gonadotropin inhibitory hormone (GnIH)
Multifactorial control of reproduction also involves other 

neurohormones such as gonadotropin inhibitory hormone 
(GnIH)20. In fish, GnIH is expressed mainly in the brain and pi-
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tuitary, although its expression has also been evidenced in the 
spleen, gonads, muscle, eyes, and kidney119-122. GnIH acts by 
binding to GnIH receptors (GnIH-R) that belong to the fami-
ly of G protein-coupled receptors. Two GnIH-Rs (GPR147 and 
GPR74) have been identified in vertebrates, but only GPR147 
appears to be present in fish122-124. GPR147 have been identified 
in fish's central and peripheral tissues, including the brain, pi-
tuitary, eyes, heart, intestine, kidney, liver, spleen, muscle, and 
gonads125-127. As its name suggests, the main function of GnIH 
is the inhibition of gonadotropin release through the inhibition 
of GnRH and kisspeptin128,129, an action that has been described 
in many vertebrates. However, the physiological functions of 
GnIH in fish are not precise yet. Contradictory effects have 
been observed in fish, both in vivo130 and in vitro131 For example, 
administration of GnIH to pituitary cell cultures of mature fe-
male Nile tilapia increased LH and FSH mRNA levels18,130. It has 
been shown that in goldfish, GnIH inhibits both the synthesis 
and the release of gonadotropins in the early stages of gona-
dal maturation but not in spawning132. Administration of GnIH 
to zebrafish by intraperitoneal injection decreases plasma LH 
levels in adult goldfish125,132. However, the inhibitory effect of 
GnIH injections was not observed in juvenile stages132. In vitro 
studies showed that the administration of GnIH from goldfish 
stimulates the expression of gonadotropins in pufferfish with 
apparent seasonal differences in reproduction132,133. These fin-
dings indicate that, in teleosts, the physiological effect of GnIH 
on the HPG axis differs between gonadotropin synthesis and 
release and depends on the reproductive stage. Even though 
researchers have shown that GnIH exerts both stimulatory 
and inhibitory actions, depending on the season and species, 
both GnRH and GnIH are considered essential components of 
the multifactorial control of reproduction20.

Gonadotropins (GtHs)
In teleosts, as in all vertebrates, the functions of the 

gonads are maintained thanks to the actions of the gona-
dotropins. They have a central role in the regulation of ga-
metogenesis134 and the steroidogenesis necessary for the 
development of sexual behavior and secondary sexual charac-
teristics1,78,80,135. Gonadotrops are cells specialized in producing 
gonadotropins such as follicle-stimulating hormone (FSH) and 
luteinizing hormone (LH). Both are glycoproteins made up of 
two non-covalently associated subunits (α and β). The α subu-
nit has 92 amino acids (aa) and is common in both gonadotro-
pins. The β subunit has 121 aa for LH and 118 aa for FSH. This 
subunit is specific for recognition by their cellular receptor 
and also confers biological activity15,53,134,136. These hormones 
exert their effects by binding to G protein-coupled surface re-
ceptors, called the LH receptor (LH-R) and the FSH receptor 
(FSH-R)134,137,138. Both receptors are mainly expressed in the 
gonads139. In the ovary, LH-R is expressed in theca cells, lu-
teal cells, and interstitial cells, regulating actions such as the 
synthesis of steroid hormones, ovulation, and the formation 
of the corpus luteum139. In the testicle, LH-R is expressed in 
Leydig cells, where it stimulates the synthesis of testosterone 
(T), a precursor hormone of testicular maturation via sperma-
togenesis.139 LH is related to the manifestation of secondary 
sexual characteristics in males, and its highest plasma levels 
are in the spermiation stage. In addition, it intervenes in the 
capture and incorporation of blood vitellogenin to the oocyte. 
In the final phase of oocyte maturation, LH levels increase, 
leading to the production of dihydroxyprogesterone (17α-20β). 
The 17α-20β is involved in the haploid processes before ovula-
tion and in sodium and potassium transport control139. For its 

part, FSH-R is expressed in the ovary, exclusively in granulosa 
cells. Its activation by the action of FSH contributes to follicu-
lar development and stimulates the synthesis of 17β estradiol. 
The 17β estradiol acts on the liver to initiate and maintain vi-
tellogenin synthesis in oocytes and is involved in gonadal ma-
turation processes.

Furthermore, FSH induces aromatase expression and 
thus modulates ovarian estrogen synthesis. On the other hand, 
in the testis, FSH-R is expressed in Sertoli cells139. In trout, 
plasma FSH increased at the beginning of oogenesis and in the 
initial phases of spermatogenesis140. Also, in Pacific salmon 
(Oncorhynchus tshawytscha), the levels of FSH remained high 
and declined immediately before ovulation and spermiation. In 
physiological studies carried out in this same species, FSH-β 
expression levels increased during the initiation of gonadal 
growth and decreased in spawning141. These results coincide 
with Schulz et al. in 2001142, where they state that FSH is in-
volved in the initial phases of gametogenesis, and LH mainly 
regulated the last stages of gonadal maturation. Previous stu-
dies have reported that FSH mRNA levels increased while LH 
mRNA decreased during the transition from female to male 
in Epinephelus merra. This was associated with testicular de-
velopment and suggests that FSH could trigger sex change in 
this species143. In recent studies, the expression of LH-β mRNA 
in the pituitary of carp (Cyprinus carpio) increased significant-
ly during the maturation of the male; however, FSH-β mRNA 
expression did not change significantly during development136. 
As published by Yaron et al. in 200329, LH-<UNK> and FSH-
<UNK> gene expression levels of LH-β and FSH-β were very 
low in the juvenile stage of carp, while they increased during 
the ovulation period. In general terms, FSH mainly controls the 
first stages of spermatogenesis, and LH regulates testicular 
maturation, ovulation, and spermiation16,50-52.

Growth hormone (GH)
The growth hormone of teleost fish is a 21-23 kDa protein 

made up of a single polypeptide chain. Similar to what happens 
in mammals, GH in fish is produced by somatotropic cells in 
the anterior region of the pituitary gland144. Furthermore, its 
expression has been confirmed in other fish tissues, including 
the brain, liver, spleen, and gonads145,146. GH is an essential 
endocrine regulator in many physiological processes in verte-
brates. In fish, it is involved in events such as somatic growth, 
energy metabolism, reproduction, appetite, the function of the 
immune system, and the regulation of ionic and osmotic ba-
lance147,148. In addition, it influences aspects of behavior such 
as aggressiveness and the ability to avoid predators149. This 
hormone is released from the pituitary in response to hypo-
thalamic signals and exerts its effects on target tissues148,150 

binding to the GHR-I and GHRII receptors (hormone receptor 
growth I and II, respectively)148,149. Growth hormone receptors 
(GHRs) are members of the type I cytokine receptor family151. 
They have been identified in several fish species, such as turbot 
(Scopthalmus maximus)146, salmon (Oncorhynchus masou)152, 
and Mozambique tilapia (Oreochromis mossambicus)153. These 
receptors are expressed in a wide variety of tissues, including 
the brain, pituitary, skin, heart, liver, gallbladder, intestine, adi-
pose tissue, kidney, spleen, gonads, and muscle152-154. However, 
the primary expression is in the liver (or hepatopancreas), whe-
re GHRs have a significant role in regulating somatic growth148. 
GH binds to its specific receptors in the liver and promotes the 
release of insulin-like growth factor-I and II (IGF-I and IGF-II), 
whose primary function is to mediate and increase the grow-
th-promoting function of GH155. IGF-I is involved in reproduc-
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tion and particularly in mediating the effects of GH on somatic 
growth154. Furthermore, it has been associated with fish meta-
bolism, development, reproduction and osmoregulation148,150. 
In the case of IGF-II, its mRNA has been detected in the liver 
and the brain, heart, kidney, gills, gastrointestinal tract, pan-
creatic islets, skeletal muscle, and gonads of fish150. This 
transcript is expressed in juvenile and adult fish, contrary to 
what has been reported for mammals where its expression oc-
curs only during the early stages of development156. GH exerts 
a lipolytic and anabolic function. The lipolytic action is inde-
pendent of IGFs and facilitates fats as an energy source in ca-
tabolic and malnutrition states157. The anabolic action of GH is 
related to protein metabolism and is mediated by IGFs157. The 
biological functions of IGFs are mediated by binding to specific 
transmembrane receptors, present in both fish and mammals.

In sexually mature ovaries of Nile tilapia, high levels of 
mRNA of both GHRs were detected. While in testes of this 
same species, the highest levels were observed after the sta-
ge of sexual maturation148. Changes in the expression of IGFs in 
the gonads and the neuroendocrine regulation of GnRH, GnIH, 
FSH, LH, GH and the GH / IGF system have been associated 
with promoting testicular steroidogenesis. They also have a 
significant influence on the oocyte maturation processes in 
several species154,156,158,160. Taken together, these observations 
suggest that GH, IGFs, and gonads are closely related and in-
volved in controlling reproductive function.

Prolactin (PRL)
PRL is synthesized mainly by the lactotrophic or PRL-se-

creting cells found in the pituitary160,161. It has a variable length 
(between 170 and 205 amino acids (aa) depending on the spe-
cies, with signal peptides of 23-24 aa. Two isoforms have been 
found in teleosts (PRL188 and PRL177), with different biologi-
cal activities83. Prolactin is generally produced at high levels in 
pituitary tissues; however, its expression has been evidenced 
in other tissues such as the liver, intestine, gonads, gills, kid-
ney, spleen, brain, and muscle162,163. Plasma PRL levels in Nile 
tilapia are increased during maternal behavior, suggesting hor-
monal control164. Other studies indicate that PRL mRNA levels 
and mature protein have been found in the gonads of different 
fish species, including Mozambique tilapia167, Nile tilapia165, 
goldfish162,166, and rainbow trout (Oncorhynchus mykiss)166. This 
suggests that PRL may be involved in spermatogenesis, vite-
llogenesis, and ovulation. However, no significant differences 
were found in PRL mRNA levels during sexual maturation of 
Japanese eels through in vitro studies by Ozaki et al. in 2007168. 
According to Onuma et al. in 2010169, in salmon, the levels of 
PRL mRNA and gonadotropins significantly were increased in 
the stage of maturation and gonadal development, which su-
ggests that these hormones may be associated with the de-
velopment of the reproductive system. In addition, PRL levels 
seem to be involved in many more functions such as develo-
ping reproductive cycles, incubation behavior, or feeding the 
fry170,171. It has also been shown to stimulate steroidogenesis 
in the ovaries and testes and increase their mRNA and plasma 
levels during sexual maturation in salmonids and tilapia153,166. 
The regulation of PRL synthesis and release into the pituitary 
is known to be influenced by hypothalamic neurohormones, sex 
steroids, and plasma factors from other tissues171. It is propo-
sed that this hormone can act in an autocrine or paracrine man-
ner and represents an exciting area for future research171,172.

Thyroid hormones (HTs)
Thyroid hormones (HTs) are involved in various biological 

events in fish, such as regulating metabolism, growth, develo-
pment, and reproduction, among others173-177. HTs (T3 and T4) 
are found in two forms in the blood: free and bound to trans-
porter proteins. Less than 1% is in the free form and there-
fore easily accessible to target cells178. The secretion of HTs 
is under the control of the hypothalamic-pituitary-thyroid axis 
(Figure 2)175,177-179. In the hypothalamus, some neurons synthe-
size, transport, and release various factors that stimulate or 
inhibit the release of HTs to the neurohypophysis. Among the 
stimulatory factors are thyrotropin-releasing hormone (TRH) 
and the inhibitors Somatostatin and TSH inhibitory factors. 
Thyroid-stimulating hormone (TSH) is released to the bloods-
tream, where it reaches the thyroid gland and stimulates the 
synthesis and release of the two HTs (T3 and T4) into the 
blood178,179. These hormones are lipidic, so they can cross the 
plasma membrane and reach the cytoplasm. T4 is secreted 
under normal conditions, while T3, known as the active hor-
mone, is produced mainly from the conversion of T4 to T3. Two 
enzymes catalyze this process with deiodase activity (DIO1 and 
DIO2)180. T3 crosses the nuclear membrane to interact with its 
THR α and THR β receptors in the nucleus. 

Once the hormone-receptor complex is formed, there is a 
self-regulation of the expression of the genes (THRα and THR 
β) that code for the THR α and THR β receptors177,179. Some 
of the first studies in fish was carried out in Pacific salmon, 
Atlantic salmon (Salmo salar), and striped bass (Morone sa-
xalitis), where it was evidenced that the thyroid hormones T3 
and T4 are transferred from the mother to the egg and are 
used during the absorption of the yolk sac in the larval period, 
to later be synthesized by the larva in the exogenous feeding 
period181. In salmon, the increase in plasma T4 levels has been 
seen in the early stages of gonadal maturation but decreases 
as vitellogenesis and testicular maturation occur182. In stella-
te sturgeon (Acipenser stellatus), high thyroid activity occurs 
in conjunction with gonadal maturation during preponderan-
ce migration and at spawning. In salmonids, the increase in 
T3 was related to vitellogenesis or the last stages of oocyte 
development12,179. In vitro and in vivo studies have shown that 
T3 treatments caused a decrease in LH mRNA levels in gold-
fish183,184. In other trials, T3 administrations in carp increased 
vitellogenin mRNA (Vtg) levels in the liver, a critical factor in 
gonadal maturation185. However, T3 treatment decreased the 
expression of estrogen receptors in golden carp testes176. In 
zebrafish, the administration of T3 stimulated the proliferation 
of Sertoli cells and spermatogonia in the testes186. In general, 
the effects of HTs on reproductive function are species depen-
dent187,188.

Gonadal development in females and males
Reproductive processes in teleost fish include puberty, 

spermatogenesis, spawning, and cellular processes such as 
steroidogenesis16. The gonads have the enzymes necessary for 
the synthesis of steroids and their transformation into a who-
le series of intermediaries involved in the different phases of 
reproduction. They produce three types of steroids necessary 
for reproduction: estrogens or C18 steroids, androgens or C19 
steroids, and progestogens or C21 steroids189. Gonadal ste-
roids exert their actions on target tissues by binding to specific 
intracellular receptors since, thanks to their lipophilic nature, 
they easily penetrate and diffuse within the cell190,191. In teleost 
testes, the synthesis of steroid (androgenic) hormones takes 
place in Leydig cells. Testosterone (T) is mainly synthesized 
and, to a lesser extent, 17α-hydroxy-4-pregnen-3-one (DHT), 
Androstenedione, and 11-ketotestosterone (11-KT)192. T is es-
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sential in the spermatogenic process and has great importan-
ce in female reproductive processes since it acts as a precur-
sor of estrogen biosynthesis. 11-KT is a critical factor in the 
maturation of gametes, the development of secondary sexual 
characteristics, and reproductive behavior193-196. Spermatoge-
nesis depends on the action of gonadotropins, and their binding 
mediates this function to their receptors in the gonads. Once 
this union occurs, the synthesis and secretion route of different 
sex steroids is activated197.

In oogenesis, hormones of a steroid and peptide nature are 
synthesized, which are essential for regulating the reproduc-
tive axis in females53. The oocyte maturation process occurs 
within the ovarian follicles and is produced mainly 17β-estra-
diol (E2). According to Nagahama and Yamashita in 2008198, 
in teleost fish, there are three essential regulators of oocyte 
maturation: Gonadotropins, maturation inducing hormone 
(MIH), and maturation promoting factor (MPF). Before oocyte 
maturation, a change in the steroidogenic pathway from E2 to 
DHP occurs in ovarian follicles199. This change during ovarian 
development is regulated mainly by changes in the availability 
of steroidogenic enzymes198. MIH activates MPF and triggers a 
series of changes associated with oocyte maturation.

One of the most critical processes for the maturation of 
the oocyte is vitellogenesis. Its principal function is the seques-
tration and packaging of vitellogenin (Vtg) and the absorption 
of very-low-density lipoproteins200,201. Vtg is synthesized in 
the liver and is specific to maturing females (Devlin and Na-
gahama, 2002). The growing ovarian follicles selectively se-
quester this through specific receptors (VtgRs) that give rise 
to the formation of Vtg-coated vesicles202. Vesicles fuse with 
lysosomes leads to the formation of multivesicular bodies 
(MVB). During vitellogenesis, gonadotropins stimulate the pro-
duction of Testosterone (T) by theca cells, and subsequently, 
it is aromatized to 17-β estradiol (E2) in the granulosa cells of 
the ovarian follicle. In response to this stimulation, plasma E2 
levels increase, which stimulates the production of Vtg in the 

liver, which is recognized by VtgR and incorporated by the oo-
cyte through micropinocytosis (Figure 3)1,27. At the end of vite-
llogenesis, plasma LH levels increase, and in turn, E2 levels 
decrease. This results in a transient increase in plasma levels 
of T and maturation-inducing steroids (MIS), which act at the 
follicular layers' level to induce the oocyte's final maturation1. 
After the rupture of the follicle, the oocyte is released, in a pro-
cess called ovulation196. Once ovulation occurs, follicular cells 
undergo morphological changes that lead to the secretion of 
progesterone (P) and E2

190,203. In general, both vitellogenesis 
and the final maturation of the oocyte are crucial events in the 
reproductive physiology of females. 

Another group of steroid hormones such as corticoste-
roids, which are usually related to stress, play an essential 
regulatory role in other physiological processes196. In teleost 
fish, corticosteroids are mainly synthesized in the inter-renal 
tissue, specifically the head kidney.  Plasma corticosteroid 
concentrations in fish depend on species, sex, and reproducti-
ve status204. Plasma levels of corticosteroids vary significantly 
throughout the reproductive cycle. For both females and ma-
les, some species contain high cortisol levels in plasma during 
the pre-spawning period, such as the rainbow trout205, perch 
(Perca fluviatilis)206, and masu salmon207. In general, steroid 
hormones play a fundamental role in controlling the reproduc-
tive function of teleost fish. These present direct or feedback 
effects through different hormonal cascades on reproductive 
functions in fish and constitute critical factors in the regulation 
of the HPG axis196. The gonadal maturation process in fish is 
highly complex since it includes the production, maturation, re-
lease of gametes, synthesis of hormones, and sexual behavior, 
which requires a large amount of available energy208. Although 
the role of energy in sexual maturation and reproduction has 
been evidenced. There are still gaps in the knowledge about 
the influence of metabolic and nutritional status on the regu-
lation of gonadal function in fish16.

Figure 2. Hypothalamic-Pituitary-Thyroid Axis (HPT). Thyrotropin Releasing Hormone (TRH); Thyroid-stimulating hormone 
(TSH); Triiodothyronine (T3); Tetraiodothyronine (T4); Enzymes with deiodinase activity (DIO1 and DIO2).
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Conclusions
In this review, the fundamental aspects involved in contro-

lling the reproductive function of teleost fish were addressed. 
The role of hormonal and neuroendocrine regulation of these 
species is described, which guarantees the proper functioning 
of the physiological machinery in reproductive events. The 
hypothalamic and pituitary hormones involved in reproduction 
in fish point to the immense complexity of endocrine regulation 
of reproductive processes. A brief overview of the integrative 
role of some neuropeptides in the regulation of feeding, meta-
bolism, growth, and reproduction was also shown. However, 
especially in fish, knowledge about these integrative functions 
of regulatory peptides is not well studied.
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