DOI. 10.21931/RB/2023.08.01.46

ARTICLE / INVESTIGACIÓN

Molecular analysis of Fungi: Malasseziarestricta from Felidae

Afkar Muslim Hadi*, Hani Saber Khalif

Iraq Natural History Research Center and Museum, University of Baghdad, Iraq. Corresponding author: afkar_hadi_iraq@yahoo.com

Abstract: A total of 9 samples of wild cat *Felischausfurax* (de Winton, 1898) and 13 (11 positives) samples of domestic cat *Feliscattus* (Linnaeus, 1758) belong to Family Felidae. All cats were trapped and used hair and skin scrapings by forceps and surgical blades. The areas of the collection were: Mosul province (north of Iraq); Baghdad, Al-Rashidiya, Tharthar, Nahrawan, AL-Mahmoudiya (middle of Iraq) and AL-Haretha (south of Iraq). The current study revealed that the sensitive and specific PCR assay allowing rapid and reliable identification of *Malasseziarestricta* by the fragment size amplified was 500bp in the ITS1 gene in one sample of wild cats. The current study recorded a new strain of *Malasseziarestricta* that called AF2013 strain "small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1", complete sequence; and 5.8S ribosomal RNA gene, partial sequence. Which was inserted in GenBank: MW376484.1 from wild cat *Felischausfurax* for the first time in Iraq. Sequencing revealed close matching of the phylogenetic tree to an isolate from Korea (CP030254). The compression was performed using NCBI – the based nucleotides website.

Key words: Dermatitis, Cutaneous microflora, fungi, Genotype, Malasseziarestricta.

Introduction

The taxonomy of *Malasseziarestricta* (E.Guého, J.Guillot&Midgley) according to GBIF¹:

Kingdom: Fungi Phylum: Basidiomycota Class: Malasseziomycetes Order: Malassezialess Family: Malasseziaceae Genus: *MalasseziaBaill*, (1889) Synonyms: *PityrosporumSabour* (1904)

The genus of *Malassezia* includes seven species comprising the three former taxa *M. furfur, M. pachydermatis* and *M.sympodialis*, and four new taxa *M. globosa*, *M. obtuse, M. restricta* and *M. slooffiae*².

Molecular techniques have increased research in this field, such that revealed the infection with *Malassezia* spp. to man for over 150 years, and seven new species have been added to this genus³.

The skin colonization with *Malassezia* spp. depends on the skin's body site, the host's age, and other comorbid skin conditions, as the geographic area. It is found in the highest density in sebaceous regions such as the scalp, face, and upper trunk. It is seen in higher densities in young adults, who tend to have relatively oily skin⁴.

Malassezia spp. is naturally found on the skin surfaces of many animals, including humans. It can cause hypopigmentation or hyperpigmentation on the trunk and other locations in humans⁵. The knowledge about *Malassezia* spp. has expanded remarkably since the 1990s in dogs and cats⁶. *Malassezia* furfurwas isolated from cats in 1999 by Crespo⁷.

The epidemiological map of the spread of fungi Malassezia from animals to humans is unclear, as Morris⁸ indicated that *M. pachydermatis* was transmitted from pet dogs to humans. This is an important indicator that prompts us to research further the transmission of *Malassezia* spp. from domestic and wild animals. In Poland, along with surveys from 2008 to 2018 for many groups of animals like dogs, cats, rodents, riding horses, birds and other pet animals (reptiles and mammals), Bozena⁹ revealed to fungal species involved and evaluated the risk of their transmission to humans.

The study aims to spotlight the species of Malasseziarestrictathat infected domestic and wild cats through molecular analysis for the first time in Iraq.

Materials and methods

Collection of samples

A total of 9 samples of wild cat *Felischausfurax* (de Winton, 1898) and 13 (11 positives) samples of domestic cat *Feliscattus* (Linnaeus, 1758) of Felidae Family were trapped and used as hair and skin scrapings by forceps and surgical blades. The scales were collected in sterile empty Petri dishes¹⁰. The areas of the collection were: Mosul province (north of Iraq); Baghdad, Al-Rashidiya, Tharthar, Nahrawan, AL-Mahmoudiya (middle of Iraq) and AL-Haretha (south of Iraq).

DNA Extraction

Genomic DNA was isolated from two samples according to the QIAamp DNA Mini Kit protocol, QIAGEN.

Primer preparation

Lyophilized primers (Macrogen Company) were dissolved in nuclease-free water to give a final concentration of 100 pmol/ μ l as a stock solution. A working solution of these primers was prepared by adding 10 μ l of primer stock solu-

Citation: Muslim Hadi A, Saber Khalif H. Molecular analysis of Fungi: Malasseziarestricta from Felidae. Revis Bionatura 2023;8 (1)46. http://dx.doi.org/10.21931/RB/2023.08.01.46

Received: 23 December 2022 / Accepted: 30 January 2023 / Published: 15 March 2023

Publisher's Note: Bionatura stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

tion (stored at freezer -20 C) to 90 μ l of nuclease-free water to obtain a working primer solution of 10 pmol/ μ l. Tables 1, 2 and 3.

complete sequence; and 5.8S ribosomal RNA gene, partial sequence, which inserted in GenBank: MW376484.1 from wild cat *Felischausfuraxfor* the first time in Iraq—fig. 3.

Primer Name	Vol. of nuclease-free water (µl)	Concentration (pmol/µl)
ITS1-F	300	100
ITS1-R	300	100
ITS2-F	300	100
ITS2-R	300	100

Table 1. Primer preparation as Macrogen Company protocol.

	PCR Component Calculation								
•	No. of Reaction 2 rxn Annealin			Annealing temperature of primers	54				
	Reaction Volume /run	25	μl	Length of PCR product (bp)	≈500				
	Safety Margin	5	%	No. of PCR Cycles	30				

 Table 2. Reaction Setup and Thermal Cycling Protocol.

Master mix componen	ts Stock	۲.	Unit	Final	Unit		Volume	
							1 Sample	
Master Mix		2	Х	1	Х	12.5		
Forward primer		10	μM	1	μМ		1	
Reverse primer		10	μМ	1	μМ	1		
Nuclease Free Water						5.5		
DNA			ng/µl		ng/µl	5		
Total volume				·		25		
Aliquot per single		20	µl of Master	mix per tube and	add	5 µl of Template		
rxn								

Table 3. PCR Program.

Agarose Gel Electrophoresis was adopted to confirm the presence of PCR amplification.PCR products were loaded directly. The Ethidium bromide-stained bands in gel were visualized using a Gel imaging system. Standard Sequencing APPLIED IN KOREA (MACROGEN CORPORA-TION) BY SANGER USING (ABI3730XL).

Results and discussion

Summary of Data Production: the results of DNA concentration for two samples were concluded in table 4.

	Sample	Conc.
	01	1
	02	1.26
~		········

Table 3. DNA Concentration (ng/µl). PCR amplification of two samples, ITS1 and ITS2, as in Figures 1 and 2.

The current study revealed that the sensitive and specific PCR assay allowing rapid and reliable identification of Malasseziarestricta by the fragment size amplified was 500bp in ITS1 gene in one sample of the wild cat as in Figure 1. And there is no results shown in the ITS2 gene as in figure 2.

Data Analysis

The current study recorded a new strain of *Malasseziarestricta* that called AF2013 strain "small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1", The current result of recording *Malasseziarestricta* cat indicates that it is a common disease between humans and animals, where it was found by Sugita¹¹ revealed that *M. restrict* commonly colonizes both AD (Atopic Dermatitis) patients and healthy subjects. And more, Annabelle¹² described the case of a pediatric oncology patient with splenic lesions secondary to *Malasseziarestricta*. Males and females are affected by the infection of (PV) PityriasisVersicolor, especially individuals between (10-20) years¹³. No significant correlation was reported between economic status; type of job; or water source with the infection of *Malassezia* spp.¹⁴, which increases the risk.

Awad¹⁴ revealed that patients who have contact with dogs only were equally exposed to *Malassezia spp.*, which reflects that dogs are not only the source of infection. Bond⁶ reviewed 18 types of fungus *Malassezia* and their locations between animals and humans and mentioned *Malassezia-restricta* only in humans.

Phylogenetic tree

The current sequencing data has reported *Malasseziarestricta* from Iraq (MW376484); their host is a wild cat; this species revealed close matching on the phylogenetic tree to an isolate of *Malasseziarestricta* strain KCTC 27527 chromosome IV, complete sequence from Korea (CP030254); their host is Homo sapiens. On the other hand, it matches the isolation of *Malasseziarestricta* strain Y. H. Yeh I0610 "small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1", "5.8S ribosomal RNA gene and

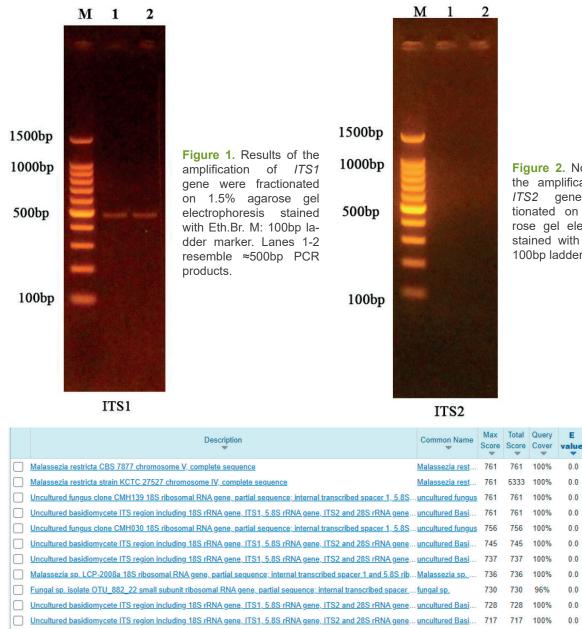
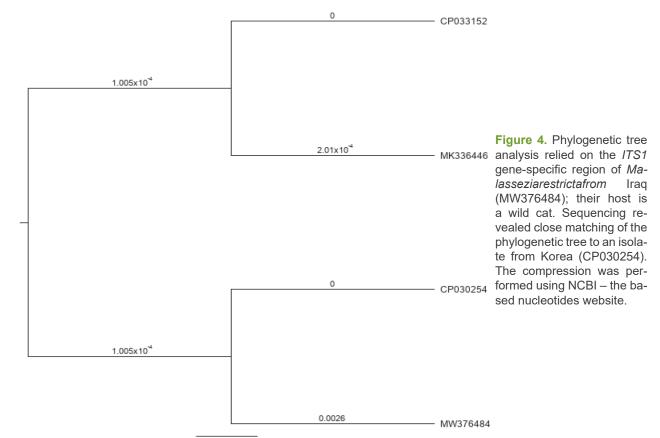


Figure 2. No Results of the amplification of the ITS2 gene were fractionated on 1.5% agarose gel electrophoresis stained with Eth. Br. M: 100bp ladder marker.

Per.

Acc

		Descipion	▼ vanie	Score	Score	Cover	value	Ident	Len	
		Malassezia restricta CBS 7877 chromosome V, complete sequence	Malassezia rest	761	761	100%	0.0	99.76%	794021	
		Malassezia restricta strain KCTC 27527 chromosome IV, complete sequence	Malassezia rest	761	5333	100%	0.0	99.76%	846651	
		Uncultured fungus clone CMH139 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S u	uncultured fungus	761	761	100%	0.0	99.76%	942	
		Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene u	uncultured Basi	761	761	100%	0.0	99.76%	905	
		Uncultured fungus clone CMH030 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8Su	uncultured fungus	756	756	100%	0.0	99.52%	943	
		Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene, u	uncultured Basi	745	745	100%	0.0	99.04%	909	
		Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene, u	uncultured Basi	737	737	100%	0.0	98.80%	901	
		Malassezia sp. LCP-2008a 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S rib	Malassezia sp	736	736	100%	0.0	98.56%	2111	
		Fungal sp. isolate OTU_882_22 small subunit ribosomal RNA gene_partial sequence; internal transcribed spacer fit	f <u>ungal sp.</u>	730	730	96%	0.0	99.50%	411	
		Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene u	uncultured Basi	728	728	100%	0.0	98.32%	909	
		Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene u	uncultured Basi	717	717	100%	0.0	97.84%	909	
		Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene, u	uncultured Basi	713	713	95%	0.0	99.00%	825	
		Uncultured Malassezia clone 252_K3_A3ov small subunit ribosomal RNA gene, partial sequence; internal transcriu	uncultured Mal	592	592	77%	8e-165	99.69%	913	
		Uncultured Malassezia clone IBL157f 18S ribosomal RNA gene_partial sequence; internal transcribed spacer 1, 5u	uncultured Mal	592	592	77%	8e-165	99.69%	762	
		Uncultured Malassezia clone WT-1-4 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5 u	uncultured Mal	592	592	77%	8e-165	99.69%	748	
		Uncultured Malassezia clone CHiv68 18S ribosomal RNA gene, internal transcribed spacer 1, 5.8S ribosomal RN u	uncultured Mal	592	592	77%	8e-165	99.69%	771	
		Uncultured fungus clone F68 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribo u	uncultured fungus	592	592	77%	8e-165	99.69%	677	
		Uncultured fungus clone ABP_38 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S u	uncultured fungus	592	592	77%	8e-165	99.69%	771	
		Uncultured Malassezia clone CEobese392 18S ribosomal RNA gene, partial sequence; internal transcribed spac u	uncultured Mal	590	590	77%	3e-164	99.69%	769	
		Uncultured fungus clone OTU_113 small subunit ribosomal RNA gene_partial sequence; internal transcribed spa u	uncultured fungus	586	586	77%	4e-163	99.38%	328	
		Uncultured Malassezia clone IM-L-1-6724 18S ribosomal RNA gene, partial sequence; internal transcribed space u	uncultured Mal	586	586	77%	4e-163	99.38%	437	
		Uncultured fungus isolate DGGE gel band F1-5-1 18S ribosomal RNA gene_partial sequence; internal transcribe u	uncultured fungus	586	586	77%	4e-163	99.38%	326	
		Malassezia restricta isolate KCTC 27527 small subunit ribosomal RNA gene, partial sequence; internal transcribe M			584	77%	1e-162	99.38%	328	
- F	Figure 3. BLAST 2 results of sequences revealed to <i>Malasseziarestricta</i> from wild cat in Iraq.									


internal transcribed spacer 2 , the complete sequence" and large subunit ribosomal RNA gene, partial sequence from Taiwan (MK336446) their host is a goat (Ipomoea pes-caprae). Then, it matches the isolation of Malasseziarestricta CBS 7877 chromosome V, complete sequence from the United Kingdom: Bristol (CP033152); their host is Homo sapiens. Fig. 4.13 revealed that the evidence shown by the

Conclusions

have high similarity with each other.

The current study spotlighted the species of Malasseziarestricta that infected domestic and wild cats by mo-

phylogenetic tree showed that all species of Malasseziaspp.

0.3

lecular analysis for the first time in Iraq, which was inserted in GenBank: MW376484.1 from wild cat *Felischausfurax*. This is a significant result as it proves that the fungus *Malasseziarestricta* is a common infection between humans and animals (zoonotic infection) and that cats can play this role.

Ethical approval

The trial was registered in "The Iraq Natural History Research Center and Museum INHM" (Email: info@nhm. uobhdad.edu.iq). The research proposal was approved by the Scientific Affairs Department of Baghdad University (SH.A.923/17/2/2021).

Conflicts of Interest

The authors declare no conflict of interest related to the work in a manuscript.

Bibliographic references

- 1. GBIF, Global Biodiversity Information Facility, 2021. https:// www.gbif.org/species/2518093
- Guého, E., Midgley, G. and Guillot, J. ,"The genus Malassezia with description of four new species", Antonie van Leeuwenhoek , 1996 (69): 337–355.
- Thayikkannu, A. B. ,Kindo, A. J., andVeeraraghavan,M., " Malassezia-Can it be ignored", Indian JDermatol, 2015;(60): 332-339
- Levin, N.A., and Delano, S., " Evaluation and treatment of Malassezia related skin disorders", Cosmet. Dermatol., 2011; (24):137-145
- Ran, Y., "Observation of Fungi, Bacteria, and Parasites in Clinical Skin Samples Using Scanning Electron Microscopy". In Janecek, Milos; Kral, Robert (eds.). Modern Electron Microscopy in Physical and Life Sciences.InTech. 2016.

- Bond,R., Daniel, O., Morris, J. G., Emmanuel, J., Bensignors, D. R., Kenneth, V. M., Rui, K., and Peter B. H., "Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats Clinical Consensus Guidelines of the World Association for Veterinary Dermatology, Veterinary Dermatology, 2020; 31 (27 –e4):1-49.
- Crespo, M. J., Abarca, M. L., and Caban^es, F. J., "Isolation of Malassezia furfur from a Cat", Journal of Clinical Microbiology, vol. 37, no.5, pp. 1573–1574, 1999.
- Morris, D.O., O'Shea, K., Shofer, F.S., Rankin, S., "Malasseziapachydermatis carriage in dog owners", Emerg. Infect. Dis. [serial on the Internet].,2005:11(1): 83-88.
- Bożena, D. K., Małgorzata, J. B., and Iwona, D., "Occurrence of various pathogenic and opportunistic fungi in skin diseases of domestic animals: a retrospective study", BMC Veterinary Research, 2020;(16): 248.
- Khosravi, A., Eidi, S., Katiraee, F., Ziglari, T., Bayat, M., Nissiani, M., "Identification of different Malassezia species isolated from patients with Malassezia infections", World Journal of Zoology, 2009; 4(2): 85-89.
- Sugita, T., Mami, T., Misato, A., Ryoji, T., and Akemi, N., "Genotype Analysis of Malasseziarestrictaas the Major Cutaneous Flora in Patients with Atopic Dermatitis and Healthy Subjects" Microbiol. Immunol., 2004;48(10): 755–75.
- Annabelle, M., Haydar, F., Alice, C., and John, V. W. "Prolonged Fever and Splenic Lesions Caused by Malasseziarestrictain an Immunocompromised Patient", Author manuscript, Pediatr Transplant, 2014; 18(8): 283-286.
- 13.Al-Jabry, A. T., and Alsudani, A. A., "Survey of Malasseziaspp. that causing PityriasisVersicolor in Al-Diwaniyah city, Iraq", European Journal of Molecular & Clinical Medicine, 2020;7(2): 4416- 4428.
- 14.Awad, A.K., Al-Ezzy, A. I., and Jameel, GH., " Phenotypic Identification and Molecular Characterization of Malassezia Spp. Isolated from PityriasisVersicolor Patients with Special Emphasis to Risk Factors in Diyala Province, Iraq", Open AccessMaced. J.Med. Sci., 2019; 7(5):707-714.