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Current methods of breast cancer diagnosis
Métodos actuales en el diagnóstico del cáncer de mama

Keila Gómez, Juan Carlos Laglaguano, Raúl Rodríguez

Introduction
Breast cancer is the most common cancer diagnosed in 

women around the world; Ecuador is not an exception (Tab. 1). 
Cancer starts when breast cells begin to grow in an uncontro-
lled manner way. To understand breast cancer, we must know 
the basic anatomical structure of the breast. Each breast is 
composed of lobules, lobes, and bulbs that are connected by 
ducts. Lobs are divided into smaller structures called lobules 
that end in tiny bulbs that can produce milk. Breast cancer is 
classified based on the anatomical structure and according to 
this classification, the most common types of breast cancer 
are the ductal carcinoma and invasive lobular carcinoma1. Di-
fferentiating all breast tumor types is relevant in the clinical 
treatment case to guarantee that patients received the most 
appropriate kind of therapy2. Currently, there are breast cancer 
detection techniques, which are very expensive, traditional and 
complicated, which leads us to the need to develop innovative, 
determined and ultrasensitive devices3. In this review, we will 
conduct a study on the new methods of breast cancer diagno-
sis currently in use such as the use of molecular signatures, 
biosensors, micro RNA, and bioinformatics methods.

Molecular signatures
The acceptance of molecular profiles of DNA, RNA, and 

proteins reveals significant differences in fundamental biology, 
and this begins to have an impact on patients who are hand-
ling this technique. Diverse bioinformatics devices have been 
refined using DNA or RNA-based signatures to classify the 
illness into biologically and clinically essential subgroups2. A 
characterization of cancer will obtain somatic mutations in the 

tumor genome, which include base substitutions, insertions, 
and deletions, changes in the number of copies and structu-
ral rearrangements. Nowadays, some mutations accumulate 
in the cell lineage, and individual or collective work gives a 
significant selective advantage to the tumor cell. Its form of 
distribution serves as a trace to discover underlying muta-
tional processes that aid the development of the tumor4,5. A 
characterization of cancer is that it obtains somatic mutations 
in the tumor genome, which includes substitutions of bases, 
insertions, and deletions, changes in the number of copies and 
structural rearrangements6. A large number of classifiers are 
found which based on the number of copies for breast cancer7. 
These classifiers can be the use of random forest variants8, 
logistic regression and group loop9, fused support vector ma-
chine10 and the union of functions that have supervision or not 
which use silhouette techniques to estimate clusters11. In the 
supervised as in the unsupervised FC, excellent performance 
found when ordering the CGH data of the tumor samples, due 
to the ability to exclude the unwanted correlation bias7. Also, 
to have an idea of the etiology of the tumor, substitution signa-
tures and patterns of structural rearrangements give a more 
definite vision. A large number of studies of complete genomes 
of breast cancer12  defined six reconditioning firms which were 
based on type and size of disposition, and also in the extension 
of the alteration in the whole genome (grouped or dispersed)2.

Biomarkers
In recent years, research in the field of molecular biology 

has contributed to the improvement in the diagnosis of can-
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cer. Tumor markers are biochemical indicators when a tumor 
is present; this incorporates cell surface antigens, cytoplasmic 
proteins, enzymes, and hormones. In clinical practice, the term 
is used to refer to molecules that are available in plasma, body 
fluids, solid tumors, circulating tumor cells, lymph nodes and 
bone marrow13. The technique of immunohistochemical detec-
tion of specific antigens of the cell cycle is used to evaluate the 
proliferative activity of cells14.

For example, Ki67 is located in the cell nucleus where it 
only binds to the perichromosomal layer in cells that divide 
and grow actively; this is used as a marker to determine cell 
proliferation. In consequence, changes in Ki67 expression in 
growing tumor cells compared to healthy cells can be used 
as an early predictor for treatment efficiency and can also be 
used as a prognostic factor for long-term outcomes in cancer 
patients15.

Salivary biomarkers are being used to characterize breast 
cancer, correlating total salivary sialic acid and breast cancer. 
The sialic acid found in the final residues of the carbohydrate 
chains are biologically necessary and essential for the func-
tioning of the glycoconjugates. In patients who have cancer, 
these markers are altered. The increase of sialylation of the 
glycoconjugates of the cell surface is localized between the 
critical molecular changes associated with malignant trans-
formation and cancer progression16. Studies have found higher 
levels of salivary sialic acid in patients who have breast cancer 
compared to the healthy control group17. Finally, the future of 
tumor biomarkers is promising, because they provide informa-
tion on the biological behavior of the tumor and this is of great 
importance because they reduce the mortality of patients who 
have cancer.

Micro-RNA
MicroRNA are small noncoding RNA molecules around of 

18-25 nucleotides in length18. They regulate gene expression 
to repress or/and promote mRNA degradation19. miRNAs can 
control multiple critical pathways that are involved in physio-
logical as well as pathological processes. The downregulation 
of miRNA genes could result from aberrant hypermethylation, 
as in the case of miR-9-1 gene in breast cancer20, or from histo-
ne deacetylation and tri-methylation, as in the case of miR-29 
in B-cell lymphomas21. MiRNA is present in several biological 
fluids, among them breast milk22. 

Breast cancer could be classified according to different 
parameters such as histology, immunopathology, mRNA ex-
pression profiling, and miRNA expression signature23. MiRNA 
signature can sub-classify breast cancer24, and can even deter-
mine new subtypes, as recently reported25. MiRNA is expressed 
in breast cancer, as manifest by microarray profiling of tumor 
and normal breast tissues26. Various studies reveal that diver-
se functions of the dysregulated miRNA in malignant breast 
transformation whereby they act as oncogenes (oncomiRNA) 
or as tumor suppressors. In breast cancer, miRNA has been 
shown to regulate cell cycle progression, apoptosis, angioge-
nesis, epithelial-mesenchymal transition, tumor microenviron-
ment, migration, invasion, metastasis and drug resistance, as 
well as the differentiation and self-renewal of breast cancer 
stem cells27. For strength to endocrine treatments, the serum 
miRNA has the potential to serve as a biomarker of EBC.

Diagnostic methods of microRNA in breast cancer
Studies carried out had shown that the miR-21 that is 

the most researched onco miRNAs in this malignant disease 
serves as a diagnostic biomarker for EBC28–34. The studies de-

tected miR-21 in breast tissues using experimental technology 
as microarray/sequencing/RT-qPCR followed by validation in 
serum and plasma33–35. Other studies were carried out in array 
panels on plasma samples followed by verification in plasma, 
and the technique that implemented was RT-qPCR32 or started 
with RT-qPCR on tissues then direct serum RT-qPCR28. Signa-
lly, serum miR-21 exhibited higher sensitivity in EBC diagnosis 
than other conventional cancer markers, such as CA153 and 
CEA30. In another study with the same method, the miR-155 
shown to upregulated in serum and tissues of breast cancer 
patients26,36–39. 

MiR-12b and miR-145 were the first to be downregula-
ted and miR-21 to be upregulated in BC tumors compared to 
normal breast tissues40–42, had used in ERα (estrogen recep-
tor alpha) + BC diagnostic the MammaPrint, Oncotype DX and 
PAM50 gene arrays. One study of miRNA expression with cu-
rrent scores from Oncotype DX on 23 human BC tumors repor-
ted that in left of 7 family members reduced expression with 
high RS and high expression of miR-377-5p, miR-663b and miR 
3648 associated with high RS scores.

Prognostic miRNAs for tumor versus regular class predic-
tion were determined by using the tool support vector machine 
and prediction analysis of software microarrays, these algori-
thms used too for cross-validation. Another method of diag-
nostic is the Northern blotting analysis that were done in RNA 
sample (10 mg each) were electrophoresed on 15% acrylami-
de, 7 mol/L urea criterion precast gels and transferred onto 
Hybond-N+ membrane39. The Hybridization was done at a tem-
perature of 37° C in 7 % SDS/0.2 mol/L Na2PO4 (pH 7.0) for a 
time of sixteen hours. The membranes were washed at 42°C 
twice with two standard saline phosphate one mmol/L EDTA, 
and 0.1% SDS and again twice with 0.5 SSPE/0.1% SDS. The 
oligonucleotides used as probes are the complementary se-
quences of the mature miRNA, used to normalize expression 
levels. In the results the microarray analysis they carried out 
the study of the Northern blot of the differentially expressed 
miRNAs26. They analyzed the expression of miR-125b, miR-
145, and miR-21 both in human breast cancers and in breast 
cancer cell line. Moreover, all Northern blots confirmed results 
obtained by the microarray analysis. The miRNAs: miR-10b, 
miR125b, miR-145, miR-21, and miR-155 were analyzed using 
three algorithms, miRanda, TargetScan, and PicTar, that are 
commonly used to predict human miRNA gene target.

Bioinformatic methods
There are many data about breast cancer such as medical 

records, clinical data or biomedical images are collected and 
available on databases. Some of the famous databases about 
breast cancer are the Wisconsin Breast Cancer Database and 
ArrayExpress. Wisconsin Breast Cancer Database is renow-
ned because it offers information of computed features of the 
breast cancer cells nuclei43. From digitized images, Wisconsin 
Breast Cancer Database offers an evaluation 32 features such 
as radius, texture, perimeter, area, smoothness, compactness, 
concavity, hollow points, symmetry fractal dimension and 
diagnosis (malignant or benignant) from digitized images of a 
fine-needle aspirate of a breast mass44. Another database is 
Array Express, that is a public repository for microarray data. 
Their databases not only contain data about cancer but also 
from functional genomics experiments of thousands of clinical 
studies, and provides these data for the reuse to the research 
community45.

Despite the existence of available data about breast can-
cer, there are no suitable methods to analyze the significant 
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amounts of data. It will be impossible for humans to process 
vast amounts of information so that computers have been fun-
damental for the development of science in general. Bioinfor-
matics combines computer sciences, biological sciences, ma-
thematics and engineering to process and interpret data. One 
of the most used fields of bioinformatics is artificial intelligen-
ce. In simple terms, artificial intelligence it would be defined 
as the use of a computer to simulate human intelligence and 
ability to learn46. Data mining and machine learning are two 
related artificial intelligence technologies; they can be related 
to each other. Machine Learning refers to the study, design, 
and development of the algorithms that give computers the 
capability to learn without being explicitly programmed47. Data 
Mining is the process that starting from apparently unstructu-
red data tries to extract knowledge and interesting unknown 
patterns. During this process, the use of machine learning te-
chniques is necessary for most of the data mining techniques.

Data mining is the automated or convenient extraction 
of information patterns from data stored in massive infor-
mation repositories, or data streams47. The primary medical 
applications of data mining are patient phenotype cohorts48, 
pharmacovigilance49, clinical pathways50, healthcare process51, 
disease progression52, and deep learning for precision medicine 
and Human-computer interaction and knowledge discovery in 
dataset approach in biomedical informatics. Data mining te-
chniques are based on training and testing the system regar-
ding the characteristic or feature that have to be analyzed. The 
complexity of the data mining process depends on how exten-
sive are the data to be examined and the number of elements 
to integrate into the mining process.

In the data mining is a multistep process53. The first step 
implies the collection, preprocessing, and normalization of 
data. Data is collected from heterogeneous sources and con-
verted into homogenous. The second step is training and tes-
ting of the algorithms to obtain some meaningful information 
in an automatized way. The third step analyzes the processed 
data and represents it in a standardized format. Finally, the 
upshots of data mining progression are useful in the prediction, 
of for example, the presence or not of cancer breast cells or 
the type of breast cancer by the use of biomedical images54 or 
analyzing DNA microarrays55. In general, data mining is used 
to test a hypothesis or to discover some new or hidden patter-
ns53. BioInformatic methods are fundamental to increase the 
accuracy of breast cancer diagnosis starting with clinical data.

Conclusion
New methods of cancer diagnosis have the potential to 

improve the accuracy of diagnosis and avoidance invasive te-
chniques that are traumatic for the patients.
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